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Abstract

Consider a sports competition among various teams playing against each other in pairs (matches) according to a previously
determined schedule. At some stage of the competition one may ask whether a particular team still has a (theoretical) chance to
win the competition. The computational complexity of this question depends on the way scores are allocated according to the
outcome of a match. For competitions with at most 3 different outcomes of a match the complexity is already known. In practice
there are many competitions in which more than 3 outcomes are possible. We determine the complexity of the above problem
for competitions with an arbitrary number of different outcomes. Our model also includes competitions that are asymmetric in
the sense that away playing teams possibly receive other scores than home playing teams.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a sports competition like a national soccer league in which all participating teams play against each other in pairs
(matches) according to a prefixed schedule. Initially all teams have total score zero. When a team participates in a match, its
total score is increased by 0 if it loses the match, by 1 if the match ends in a draw, and by 3 if it wins the match. Wé,&ll (0
thescore allocation ruleof the competition.

At a given stage of the competition one may ask whether a particular team still has a (theoretical) chance of “winning” the
competition, i.e., ending up with the highest final total score. This sports competition prodliemnétion problerh can be
translated into a flow problem and would be polynomially solvable, if the ancient FIFA rule 2) was used (cf[9,6,3)).

However, Kern and Paulusnj@] and Bernholt et al[2] independently prove that for the rule, @ 3) the problem isNP
-complete, and determine the computational complexity for all possible (ul@sy) € R3 with « < f<7.

Other research involves Wayid] and Adler et al[1], who independently present a faster algorithm for the classic elimination
problem by establishing a certain elimination threshold. Gusfield and M8} tgtneralize this result for a wider range of problem
settings, and study other elimination questions. In Pauly8ina class of the so-called competition games is introduced. In a
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Table 1

Examples of sports competitions

Set of outcomes Competition
{(0,2), (1, 1), (2,0)} Basketball, draughts
{(i,25),(25,i) | i=0,..., 5} Bridge
U{(i,30—1i) | i =6,...,24

{0.1). (3. 3). (1,0} Chess
{(0,2),(1,2),(2,1), (2,0)} Darts
{(0,3),(1,3),(2,3),(3,2),(3,1), (3,0} Darts, volleyball
{(0,3), (1, 1), (3,0)} Draughts, soccer
{(0,6), (1,1), (6,0} Stratego
{(i,10—1i) | i=0,...,10} Table-tennis
{G,4—1i)]i=0,...,4} \olleyball
{i,5—-1i)i=0,...,5} \olleyball

competition game a certain team wants to bribe some other teams in order to win the competition. The difficulty is deciding
whether bribing is profitable or not, and this problem comes down to solving the related sports competition problem.
In this paper, we generalize the sports competition problem in the following ways. We allow

e Competitions with more than two different outcomes of matches,
e Competitions in which away playing teams receive other scores than home playing teams.

In both cases, we want to determine the complexity of the sports competition problem. Instead of a score allocation rule, we
consider aset of outcomes

§={(o1, f1), (@2, B2), - -, (o, By)}

defining the possible outcomes of a match. For a match ending:irf;, «; € R is the number of points the home playing
team receives, anfl € R is the number of points obtained by the away playing team. Note that a score allocation fulg)
corresponds to the set of outcontes: {(«, y), (S, f), (7, «)}. Table 1lists several examples of competitions.

In draughts one has tried to reduce the number of draws not only by changing the number of points for a victory into 3 instead
of 2 but also by making a distinction between several kinds of draws. This resulted in the following proposals, which have been
tried out in several tournaments:

1 {(0.5). (2.3), (25.23). (3.2). (5.0)}

52 {(0,5),(1,3),(2,2),@3 1), (50}

S3 = {0,3),(1,1),(1,2),(1,3),21),31,30} | .
In various competitions the home playing team has a certain advantage over the team of visitors (e.g., more support by the

spectators, a well-known playground). Consider for example a Dutch soccer competition, in which many teams have problems
to score in an away match. This motivates our second generalization, which allows to reward a victory or draw in an away match
with more points. For example in case of soccer competitions an alternative set of outcomes Saud{tie 5), (2, 3), (5, 0)}
or S5 ={(0, 6), (2, 3), (5, 0)}.
We now describe the problem more precisely. Let {rg, t1, . . ., ;} denote theset of teamgarticipating in the competition.
The particular team under consideration will be tegmEach teanm; € T is assigned &urrent scores; € R. We refer to
s=(sg,...,8) € RT as thecurrent score vectorThe set of remaining matches denoted byM. A matchm € M in which
teamy; plays at home against is denoted ag : ¢;. Itis possible that two matches, andm; in M have the same home team
playing against the same away teamThe triple(7, s, M) defines an instance of the generalized sports competition problem
as defined below.
Lets € RT denote the final score vector, i.8. s the final score for team € T after all remaining matches M have been
played. We say thap haswonthe competition, if; <o for all 7; € T. Our sports competition problem can now be formulated
as
Generalized sports competition (GSCY)).
InstanceA triple (T, s, M) as described above.
Question Can a final score vect@re RT be reached such that<soforally; e T ?
Our main result completely characterizes the complexity of &pfo¢ each possible choice &



W. Kern, D. Paulusma/Discrete Optimization 1 (2004) 205-214 207

Remark. Note that in the definition of GSG[ no assumption is made on the current score vecterR' . In particular, we

do not require thas can be “reached” from an initial score vectdr= (0, ..., 0) via previous matches with outcomesSn

Adding such a reachability condition on the current score vector—thus restricting the set of instances—would probably leave
our results unchanged but complicate the proofs considerably. (For example, norntadiging do in Section 4 is problematic.)

The problem of deciding whether a given score vector is reachable, says¥frendo, .. ., 0) is probably a difficult problem in

its own.

We first show that the complexity of GSC depends on the complexity of a specific subproblem of GSC, the guacsdded
sports competition problefSC, whereg has already finished all its matches, i.e., its final score equals its currenfgeosg.
We prove that GSG) is polynomially equivalent to PSS) and then restrict ourselves to the problem PSC.

2. The partial sports competition problem

Consider an instancd’(s, M) of GSC) with corresponding set of outcomés= {(«;, f;) | 1<i <n}, and assume thaj
has finished all its matches, i.6€p, = sg. We can then model the partial sports competition problem as follows.
We introduce a directed multigrajgh= (V, A). Each vertex € V represents a team## rg. Each vertex € V has acapacity

ci =0 — si (=50 — si)
indicating how many score pointsmay still get. The arcea = (i, k) € A represent matches: 7. So an arc fromto k indicates

that teanr; has a home match against tegmAn assignmenis then a mapt — S, assigning some outconte;, f3;) to every
arca € A. Thus an assignment partitions the sé¢ts(i) and4~ (i) of leaving, respectively, incoming arcsiat V into sets

Al ={a € 47 (i) | a is assigned ta;; : ;)

andB! = {a € A7 (i) | a is assigned ta;; : f8;}.

The partial sports competition problem can then be equivalently stated as

Partial sports competition problem PSCE).

Instance A multigraphG = (V, A) and node capacitiese R" .

Question Can we find an assignment such that for each rioglé/:

n . n A

D alAl+ ) BB I<ci? (2.2)
j=1 j=1

An assignment satisfying the capacity constraints (2.1) is caldwionof the instance@, c).

3. Equivalence of GSC and PSC

For most set$(e.qg., for those listed ifable 1) the assumptiofiy = sq is easily seen to beithout loss of generalityindeed,
when analyzing whethep has still a chance of winning the competition, we may always assume w.l.0.gg tvats all its
remaining matches. For arbitrary sets of outcomes, determining the “opfigi@lé., reducing GSQ) to PSCE)) is somewhat
more complicated.

Example 3.1. Consider, say, a competition consisting of four teams With {(1, 0), (2, 7), (0, 1)}. It is not immediately clear
how many matches af have to end in X 0 or 0: 1. In general, one might think that the optimal strategyrfowould be to
gain a rather high final scoig by playing “as many as possible” matches2 However, this is not true, if the competition is
in a state such as defined below.

Remaining

Teams Scores matches
17} 11 fo: 11
1 13 f1:1o
o 16 fg:12
13 23 fo:13

12
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Thenrg can only win the competition by playing:27 and 7: 2 againsty, 2 : 7 againsty, and 1: 0 against3 resulting in a
final scoresg = 23.

Now consider an arbitrary sét= {(«;, ;) | j =1, ..., n} of outcomes. If PSG) is NP -complete, then so is (the more
general) GSCY).

So assume PSEYis polynomially solvable. We could then, in principle, solve GS@E follows. Given an instanc& (s, M),
we consider all possible wayg{assignmenjsn which g can finish its remaining matches. We then solve FSpfof the various
score vectors and corresponding capacities

Ci =50 — ;.

We claim that it suffices to consider only polynomially magyassignments.

First, note the following: if two differenfy-assignments result in capacity vectémndc’ with ¢ < ¢’ (i.e., ¢ is dominatedoy
'), then it suffices to consider thg-assignment leading td. (If PSC() is solvable with capacities, then it is also solvable
with capacities’.)

This observation allows us to reduce the relevant possible outcomes: suppg¢, (o, ;) € S with o; <o; ando; —
Bi<oj— ﬁj. Then ap-assignment (and its corresponding capacity vector) thagletayo; : f; in a home match is dominated.
So we may restrict the possible outcomes for home matchgsof set

86 =iy, Biy): - @i, Bi )}

with oy <--- <o, andajy — By >+ >0, — Bi,-
Similarly, we may restrict w.l.0.g. the set of possible outcomes of an away matghaé set

56 ={j1. Bjp)s - (2, Bj )}
Withﬁjl<~-~<ﬁjq andﬂjl—ocj1>--->/3jq —aj,

Lemma 3.1. Supposee;, ;). (o, f;) € Sg with o; <o ;. Then it suffices to consideg-assignments that assign less than
B;=Bi

= home matches of) against pairwise different teams to the outcome f; (otherwise the assignment is dominajed

bt

Let s denote the resulting score vector. For eagh7’, change the outcome fram: f; to aj : p; for exactly one of theo t
matches and leave all other outcomes unchanged. This results in a scorevedtior

Proof. Consider ag-assignment with outcomes : 8; for home matches afy against a s’ of teams with|7’| >

5+ 1T (wj — o) i1y =10
S: = Ei"’ﬁj_ﬁi if[iET/
S otherwise.
Thenc’ > ¢ for the corresponding capacity vector, i&is dominated. [

Note that in Lemma 3.%; < o; implies 5, ﬁf ﬂ’

>0, sinces; — f; > o; — ; by construction oﬁ‘g. So if

ko _max{i I(al,[f) (o, /3)650}

J T
the relevant (non-dominategy-assignments for home matches@€an be constructed as follows. For a fixed teagh g there
are, say|M;| < |M| home matches : ¢ for g and hence

\Mt|+p—l> <|M|+p—1>
< <p|M|P
<\M,| M| il

possiblerg-assignments. An outcome : f5; with «; < %;, OCCUrs in at moskg home matches af) against pairwise different
teams. So there are at magt — 1)k8 many teams € T for which rg finishes a home match witly : §;, o; < %, i.e., to
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plays its home matchesp : ﬁ,-p against at leas’| — (p — 1)kg many teams. So the total number of relevgrassignments
on home matches is bounded by

(P—Dkg 7] )
> (,- )pIMI”:@(lTI”"OpIMI”).
i=0

A similar argument can be applied to the away matcheg.dthus, we obtain

Theorem 3.1. For any set S of outcome&SQS) is polynomially equivalent t8SQS).

4. Normalization of the set of outcomes

Our main theorem completely determines the computational complexity of3pRCall possible sets of outcom&sBefore
we go into that result we first prove the following proposition that reduces the number of sets of outcomes with respect to
complexity questions. We létt andd— denote the outdegree and indegree of a node.

Proposition 4.1. AssumeS = {(o1, 1), (22, f2), ..., (o, B,)}. Then there exists a set of outcomes
S/ = {(Os /;él_)s (13 /3/2)’ (0(/3’ ﬁé)v ceey (a;(_ls ,[;;{_l)v (a;(v O)}

withk<n, 1<aj<oy<---<oj andfy > fi,>---> f;_; >1such thatgiven an instancéG, c) of PSQS) we can derive
an equivalent instancgs’, ¢’) of PSQS’), i.e, (G, ¢) has a solution if and only ifG’, ¢’) has a solution

Proof. Suppose two outcomes;, f;), (o, ;) € S exist witho; <a; andf; < ;. We are searching for an assignment, in
which everyi € V receives a sufficiently small number of additional points. So the outcamg;( is always more preferable
than ¢;, ﬁj). In other words, we may remove: f, ﬁj) from S After deleting all redundant outcomes, we can arrange the

remaining outcomes in such a way that we have obtained S &#t< » outcomes

(31, B1)s (i, B - -, (G Br))

with ap <o <--- <0 andBl_>Bz>--~>/_3k.
Seté; : =¢; — 2101 (i) — f07 (i) for eachi € V. Then itis clear that we have obtained an equivalent instaGicé)(of
PSC(), where

S =10, By — Br), (a2 — 01, Po — Br). - .., (3 — 012, 0)}.

Assume thakp — 33 < f;_1 — ;. Otherwise reverse the arcs@and the pairs¥;, ;). For alli € V dividec; by a — 3. For
1< j<kdividea; — a3 andf; — fy by & — 1. This way we have obtained an equivalent instarige ¢') of PSC(’), where

§"={(0, B (L. B5). (3, B3). - - s (%1, fr_1): (%, O)}

withk<n, l<og<dy<---<wandpy>po>--->p_,>1. O

We call the ses’ in Proposition 4. .normalized Note that a set of outcom&zan be normalized in polynomial time.

5. Three-dimensional matching graphs

In cases where PSE)(turns out to bé\P -complete we prove this by reduction from 3-dimensional matching (3DMMBE.

3-Dimensional matching (3DM).

Instance Three disjoint setX, ¥ andW with the same number of elememfsind a subseR € X x ¥ x W.

Question Does there exist 3-dimensional matching.e., is there a subset of triplé& < R such thatR’ covers each element
of X UY U W exactly once?

Let (X, Y, W, R) be an instance of 3DM. The problem will be trivial, if an elemert X UY U W does not occur in some
triple r € R. Therefore, we assume thatale X UY U W occur in some € R.
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w

x|
<|

Fig. 1. A 3DM graph.

We construct amndirectedgraphG = (V, E) as follows. We first make one copy of each elemeatX U Y U W for each
occurrence ofin R, i.e., we define

{x,r)|xeX,reR,xer)
= {(y,r)|yeY,reR,yer}
{(w,r) |l we W,re R,wer}.

= <
|

The node set of Gis defineda = X UY UW U X UY U W U R. The edges o6 are defined by the incidence relations in a
straightforward way, i.e.,

E = {(x, (x,r)] &, r)eX}
Uiy, ,r) I (y,r) €Y}
U{w, (w,r) | (w,r) € W}
Uf(r, (x,r) | (x,r) € X}
Ul (o) | ) € 7}
J{(r, (w,r) | (w,r) e W} (cf. Fig. 1)

We call the graplG a 3-dimensional matching grap®ur reduction from 3DM in Section 6 is based on this type of graphs
by directing them and defining node capacities in an appropriate way.
6. Complexity results
The following theorem determines the complexity of PSG¢r all sets of outcomeS.
Theorem 6.1. PSQS) is polynomially solvable jfafter normalization
S={G,n—1i)|0<i<n}

for somen € N. In all other cases the problem P -complete

Proof. By Proposition 4.1 we may without loss of generality assume$hainormalized. I S| = 1, then after normalization
S ={(0, 0)} and the problem is trivial.
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Supposeg S| >2 and S={(0, 7). (1, p2), (03, f3). . .., (tr—1. Br_1), (o, 0)} with l<oz<ag<---<a, and f1>fo>--->
f.—1=1. We prove the theorem by establishing a sequence of claims. In the end it will be clear that only if
S={@,n—1i) | 0<i<n}, PSCQ is polynomially solvable.

Claim 1. If o; > o;_1 + 1 for some3<i <n, thenPSCE) is NP -complete

As mentioned in the previous section we préife -completeness by reduction from 3DM. Supppse= |Y| = |W|=¢q and
R C X x Y x W are given. We are to determine whetlecontains a matching” C R. After constructing the corresponding
3DM graphG (cf. Fig. 1) we direct the edges and define node capaditieRV as follows.J refers to the degree function 6k

arcs from W to w

= C=ap(0—1)+ o1 onw
arcs from R to w c= max(p 8 + B:}on W
arcs from R to X i=1 Pn—17TPi

- c=maxXa;, 2+ o;_1} onR
arcs from R to Y - =

= c=f1+fo onxXuY
arcs from X to X

- c=1 onxXUuY.
arcs from Y to Y.

This way we have constructed an instan6e ) of PSCE). We claim that G, ¢) has a solution if and only iR contains a
3DM.

“«" SupposeR’ C R is a matching. Define a corresponding assignmentfas follows. For eachy € W choose the unique
v’ e R’ with (w, r") € W. Let the matchw : (w, ') end ina,_1 : ,,_1 and all other matches betwearand W in o, : 0. This
way the capacity constraints wfare met. For each= (x, y, w) € R' letr : (w, r) end iny; : ;. Bothr : (x,r) andr : (y, r)
end in 0: ;. For eachr = (x, y, w) € R\R' letr : (w,r) endina;_1 : f;_1. Bothr : (x,r) andr : (y,r) endin 1: B5. This
way we ensure that the capacity constraintstomndR are respected. Finally, let all matches betw&eandX end in 0: f;
except those that correspond to an eleme®'inThey end in 1 f,. This way the capacity constraints frand X are met. We
determine the outcomes of matches betwEemdY in the same way. This assignment gives a solution of the instaihas (

“=” Conversely, suppose we are given an assignmenGfoespecting the capacity constraints. Each X has achieved
at most 1 additional point. Suppose w.l.0.g. thatdeed has played one match that ended irf3, while all other remaining
matches betweer and X ended in 0: 4. (If this is not the case, then we could modify our solution without violating the
capacity constraints). A similar argument holds for elementsy .

Nodes inX have degree 2. In view of their capacity boyhd+ o, we may assume w.l.0.g. that eaah ) € X has played
one match that ended in 01, and one match that ended in: 15,. Otherwise we could again modify the solution, since
p1>pPo>--->p,_1>p, =0.Then we conclude that

e There are exactlyX | matches betweek andR ending in O: 1. Moreover, ifr : (x, r) has ended in 0 1 andr’ : (x, ")
has ended in 0 81, thenx # x’.

The same holds for matches betwéeto R.

A nodew € W has capacity, (6(w) — 1)) + o, _1. Then w.l.0.g. we may assume thiiw) — 1 matches between and
W have ended im, : 0, and that one match of has ended i, _1 : pn_1. Otherwise we could modify the solution, since
oy >0py_1>--->03>0p=1.

Nodes inW have degree 2 and capacity bound ffax, f,_1 + Bi}-

Suppose maif; 1, f,—1 + fi} =Pi_1. If w: (w,r) has ended in, : 0, then we may assume w.l.0.g. that (w, r) has
ended inx;_1 : f;_1. If w: (w, r) has ended im,,_1 : f§,,_1, then the maximum number of point®, r) could achieve in its
away match againstis ;. (Recall thay, _; >1andf; < ;_1 for2<j <n.) Therefore, we assume thatin that casew, r)
ends iny; : f5;.

Suppose m&p; _1, f,_1+ P;i}=P,_1+ ;. If w: (w, r) has ended in, : 0, then we may assume that (w, r) does not
end ino; : f3;, since we can always change the outcomeintq : f; _1. If w : (w, r) has ended im;,,_1 : 8,,_1, then we can
assume that : (w, r) has ended in; : f3;.

In both cases we conclude that

e There are exactly | matches betwee andRending iny; : ;. Moreover, ifr : (w, r) has endedin; : f; andr’ : (w’, r')
has ended in; : 8;, thenw # w’.

Finally, the capacity constraints éhimply that a node: = (x, y, w) € R can only play a match again@b, r) that ends in
o; @ f;, ifbothr : (x,r) andr : (y,r) endin O: f3;.
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This can be seen as follows.dfr) = o;, this is immediately clear. Supposé-) = 2 + o; _1. Suppose : (w, r) ended in
o; @ f; and that, say; : (x,r) ended in I 5. Theno; + 1<2+ ;1. Hencey; <«;_1 + 1, a contradiction to our assumption

o >o;_1+ 1.
From this and the above observations, it is straightforward to check that

R ={r=(x,y,w) € R|r:(w,r)endediny : B}
actually is a 3DM.
Claim 2. If f;_1 > p; + f,_1 for some2<i <n — 1,thenPSQS) is NP -complete

The proof of Claim 2 is analogously to the proof of Claim 1. Revessendf; (i =1, ..., n).
From now on suppose for allRi <n

y<wi—1+1 and B _1<pBi+ B, 1 (6.1)
Claim 3. If o; <o;_1+1andf;_o > f; + f,,_1 for some3<i <n, thenPSQS) is NP -complete

Again we proveNP -completeness by reduction from 3DM. Supp@sé= |Y|=|W|=qg andR € X x Y x W are given.
After constructing the corresponding 3DM graBlwe direct the edges and define node capaditiesR" as follows:

arcs from to

W W21 onw
arcs from R to W =B+ on W
arcs from R to X e
- c=max2x;,20;_1 +1}on R
arcs from R to Y XUY
- c=pi+ b onxuy
arcs from X to X C=0p(6—1) +u onxuy
arcs from Y to Y. - e .

This way we have constructed an instan6e ¢) of PSCE). We claim that G, ¢) has a solution if and only iR contains a
3DM.

“«" SupposeR’ C R is a matching. Define a corresponding assignmenGfar a similar way as in the proof of Claim 1.

“=” Suppose we are given an assignmentdbrespecting the capacity constraints. Eache W can achieve at most 1
additional point. Suppose w.l.0.g. thatindeed has played one match that ended irp3, while all other remaining matches
betweerw andW ended in Q: ;.

Nodes inW have degree 2. In view of their capacity boyhd+ f,, we may assume w.l.0.g. that eaeh, ) € W has played
one match that ended in:(8,, and one match that ended in f,. Then we conclude that

e There are exactlj | matches betweeW andRending in 0: ;. Moreover, ifr : (w, ) has ended in 0 1 andr’ : (w’, ")
has ended in 0 81, thenw # w’.

Anodex € X has capacity,, (5(x) — 1)) + a,_1. Then w.l.0.g. we may assume tfdk) — 1 matches betweenandX have
ended inx, : 0, and that one remaining matchyoas ended i1 : f,,_1. A similar argument holds for elementse Y.

Nodes inX have degree 2 and capacity boufjdt- f8,_1. If x : (x, r) has ended in, : 0, then the maximum number of
points (, r) could achieve in its away match againss $;_;. (Recall thats; _» > f; + ,_1.) By (6.1) we may assume that
r:(x,r)yendsineg_1: f;_1.1f x : (x,r) has ended in,_1 : §,,_1, then we can assume that (x, r) has ended in; : f;.
Hence we conclude the following.

e There are exactlyX | matches betweek andRending ins; : ;. Moreover, ifr : (x, ) has ended in; : §; andr’ : (x, r')
has ended in; : f;, thenx # x’.

The same holds for matches betwéeto R.

Finally, the capacity constraints dhimply that a node- = (x, y, w) € R can only play a match againét, ) or against
(y,r) thatendsiny; : f5;, if r : (w,r) endsin 0: fi;.

This can be seen as follows. Suppesgw, r) endsin L: f, andr : (x, r) endsiny; : ;. The match : (y, r) endsiny; : ;
oroj_1: fi_q1.1f c(r) =20; andr : (y,r) ends inu;_1 : f;_q1, theno; + o;_1 + 1< 2;, a contradiction to our assumption
o <aj—1+ 1. Ife(r)=20;_1+1andr : (y,r) endsing_1 : ; _1, then agaire(r) is too small.
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From this and the above observations, it is straightforward to check that
R ={r=(x,y,w) € R|r: (w,r)endedin G 1)
is a 3DM.
Claim 4. If p;_1 < f; + f,—1 anda;11 > o;_1 + 1for some2<i <n — 1,thenPSQS) is NP -complete
The proof of Claim 4 is analogously to the proof of Claim 3. Revegsandf; (i =1,...,n).

Claim 5. If o; <o; 1 + 1for some3<i <n, thenPSQS) is NP -complete

Supposery, < ax—1 + 1 withk =min{i | o; <a;_1 + 1}. Sinceap = ag + 1, k=3, If f_» > B + B,_1, then the claim
follows from Claim 3. Supposg;_» < i + f,—1. Sincef; < fr_1, we obtainf, _» < fy_1 + f,—1. Becaus& is minimal,
og—1 = ox—2 + 1. Hencexy > ay_1 = ax_2 + 1, and the claim follows from Claim 4.

Claim 6. If ;_1 <f; + B,_1 for some2< j<n — 1,thenPSQS) is NP -complete
Supposes; _1 < f; + B,_1 forsome < j<n — 1. By (6.1) and Claim 5 we can assume thato,; 1 + 1 for all 2<i <n.

Thenoji1=a; +1>a;_1+1, and the claim follows from Claim 4.
Up to now we have proven that PS8} (s NP -complete unless

S={U (n=0Dp) | 0<i<n}

for somef > 1.
Claim 7. If §> 1,thenPSQJS) is NP -complete

Again, we prove\lP -completeness by reduction from 3DM. Supppsé= |Y|=|W|=g andR C X x Y x W are given.
After constructing the corresponding 3DM gra@twe direct the edges and define node capacitiest" as follows:

arcs from w to W .

- c=nfo—1 n—1LpfonWwW
arcs from w to R A )+ ( L -
arcs from R to X c=n onw

- c=maxp, 2} on R
arcs from R to Y - =

- c=nf+m—-1p onxXuy
arcs from X to X

- c=1 onxXuY.
arcs from Y to Y.

This way we have constructed an instan6e €) of PSCE). The claim that G, ¢) has a solution if and only iR contains a
matching can be proven in the same way as we did for Claims 1 and 3.

From the above we conclude that PS¢ NP -complete, ifS # {(i,n —i) | 0<i <n} after normalization. We have proven
our theorem by showing the validity of the final claim.

Claim 8. If p=1,thenPSQJ) is polynomially solvable

Consider an instance given I6y= (V, E) andc € RV . Construct a directed bipartite graph with node seandE and arcs
linking eachi € V to all edges irE incident withi in G. Then add an additional sours@nd sinkt as indicated irFig. 2

The arcs fronsto V all get lower capacity O and upper capadity| (i € V). The arcs fronV to E get lower capacity 0 and
upper capacity. The arcs fronE to t get lower and upper capacity The resulting network has a feasilsi¢ flow if and only
if our instance G, ¢) has a solution. This can be seen as follows. Since all capacities are integral, a feafiitemay also be
assumed to be integral. Each nade E in our network has two incoming arcs which carry a total flownemits, distributed
asi : n — i for some G<i <n corresponding to an outcome n — i.

As a result of this and Theorem 3.1 we find the following corollary that generalizes the complexity re§rigg.in

Corollary 6.1. GSQS) is polynomially solvable jfafter normalization
S={G,n—1i)|0<i<n}

for somen € N. In all other cases the problem P -complete
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E

Fig. 2. The case where PSE(an be translated into a flow problem.
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