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Abstract

Consider a sports competition among various teams playing against each other in pairs (matches) according to a previously
determined schedule. At some stage of the competition one may ask whether a particular team still has a (theoretical) chance to
win the competition. The computational complexity of this question depends on the way scores are allocated according to the
outcome of a match. For competitions with at most 3 different outcomes of a match the complexity is already known. In practice
there are many competitions in which more than 3 outcomes are possible. We determine the complexity of the above problem
for competitions with an arbitrary number of different outcomes. Our model also includes competitions that are asymmetric in
the sense that away playing teams possibly receive other scores than home playing teams.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a sports competition like a national soccer league in which all participating teams play against each other in pairs
(matches) according to a prefixed schedule. Initially all teams have total score zero. When a team participates in a match, its
total score is increased by 0 if it loses the match, by 1 if the match ends in a draw, and by 3 if it wins the match. We call (0,1,3)
thescore allocation ruleof the competition.

At a given stage of the competition one may ask whether a particular team still has a (theoretical) chance of “winning” the
competition, i.e., ending up with the highest final total score. This sports competition problem (elimination problem) can be
translated into a flow problem and would be polynomially solvable, if the ancient FIFA rule (0,1,2) was used (cf.[9,6,3]).
However, Kern and Paulusma[7] and Bernholt et al.[2] independently prove that for the rule (0,1,3) the problem isNP
-complete, and determine the computational complexity for all possible rules(�, �, �) ∈ R3 with �����.

Other research involvesWayne[10] andAdler et al.[1], who independently present a faster algorithm for the classic elimination
problem by establishing a certain elimination threshold. Gusfield and Martel[5] generalize this result for a wider range of problem
settings, and study other elimination questions. In Paulusma[8] a class of the so-called competition games is introduced. In a
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Table 1
Examples of sports competitions

Set of outcomes Competition

{(0,2), (1,1), (2,0)} Basketball, draughts
{(i,25), (25, i) | i = 0, . . . ,5} Bridge
∪{(i,30− i) | i = 6, . . . ,24}
{(0,1), ( 1

2 , 1
2), (1,0)} Chess

{(0,2), (1,2), (2,1), (2,0)} Darts
{(0,3), (1,3), (2,3), (3,2), (3,1), (3,0)} Darts, volleyball
{(0,3), (1,1), (3,0)} Draughts, soccer
{(0,6), (1,1), (6,0)} Stratego
{(i,10− i) | i = 0, . . . ,10} Table-tennis
{(i,4 − i) | i = 0, . . . ,4} Volleyball
{(i,5 − i) | i = 0, . . . ,5} Volleyball

competition game a certain team wants to bribe some other teams in order to win the competition. The difficulty is deciding
whether bribing is profitable or not, and this problem comes down to solving the related sports competition problem.

In this paper, we generalize the sports competition problem in the following ways. We allow

• Competitions with more than two different outcomes of matches,
• Competitions in which away playing teams receive other scores than home playing teams.

In both cases, we want to determine the complexity of the sports competition problem. Instead of a score allocation rule, we
consider aset of outcomes

S = {(�1, �1), (�2, �2), . . . , (�n, �n)}

defining the possible outcomes of a match. For a match ending in�i : �i , �i ∈ R is the number of points the home playing
team receives, and�i ∈ R is the number of points obtained by the away playing team. Note that a score allocation rule(�, �, �)
corresponds to the set of outcomesS = {(�, �), (�, �), (�, �)}. Table 1lists several examples of competitions.

In draughts one has tried to reduce the number of draws not only by changing the number of points for a victory into 3 instead
of 2 but also by making a distinction between several kinds of draws. This resulted in the following proposals, which have been
tried out in several tournaments:

S1 = {(0,5), (2,3), (21
2,21

2), (3,2), (5,0)}
S2 = {(0,5), (1,3), (2,2), (3,1), (5,0)}
S3 = {(0,3), (1,1), (1,2), (1,3), (2,1), (3,1), (3,0)}.
In various competitions the home playing team has a certain advantage over the team of visitors (e.g., more support by the

spectators, a well-known playground). Consider for example a Dutch soccer competition, in which many teams have problems
to score in an away match. This motivates our second generalization, which allows to reward a victory or draw in an away match
with more points. For example in case of soccer competitions an alternative set of outcomes could beS4 ={(0,5), (2,3), (5,0)}
or S5 = {(0,6), (2,3), (5,0)}.

We now describe the problem more precisely. LetT = {t0, t1, . . . , tl} denote theset of teamsparticipating in the competition.
The particular team under consideration will be teamt0. Each teamti ∈ T is assigned acurrent scoresi ∈ R. We refer to
s = (s0, . . . , sl) ∈ RT as thecurrent score vector. Theset of remaining matchesis denoted byM. A matchm ∈ M in which
teamti plays at home againsttj is denoted asti : tj . It is possible that two matchesm1 andm2 in M have the same home teamti
playing against the same away teamtj . The triple(T , s,M) defines an instance of the generalized sports competition problem
as defined below.

Let s̃ ∈ RT denote the final score vector, i.e.,s̃i is the final score for teamti ∈ T after all remaining matches inM have been
played. We say thatt0 haswonthe competition, if̃si � s̃0 for all ti ∈ T . Our sports competition problem can now be formulated
as
Generalized sports competition (GSC(S)).
Instance: A triple (T , s,M) as described above.
Question: Can a final score vectors̃ ∈ RT be reached such thats̃i � s̃0 for all ti ∈ T ?

Our main result completely characterizes the complexity of GSC(S) for each possible choice ofS.
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Remark. Note that in the definition of GSC(S) no assumption is made on the current score vectors ∈ RT. In particular, we
do not require thats can be “reached” from an initial score vectors∗ = (0, . . . ,0) via previous matches with outcomes inS.
Adding such a reachability condition on the current score vector—thus restricting the set of instances—would probably leave
our results unchanged but complicate the proofs considerably. (For example, normalizingSas we do in Section 4 is problematic.)
The problem of deciding whether a given score vector is reachable, say, froms∗ = (0, . . . ,0) is probably a difficult problem in
its own.

We first show that the complexity of GSC depends on the complexity of a specific subproblem of GSC, the so-calledpartial
sports competition problemPSC, wheret0 has already finished all its matches, i.e., its final score equals its current scores̃0 = s0.
We prove that GSC(S) is polynomially equivalent to PSC(S) and then restrict ourselves to the problem PSC.

2. The partial sports competition problem

Consider an instance (T , s,M) of GSC(S) with corresponding set of outcomesS = {(�i , �i ) | 1� i�n}, and assume thatt0
has finished all its matches, i.e.,s̃0 = s0. We can then model the partial sports competition problem as follows.

We introduce a directed multigraphG=(V ,A). Each vertexi ∈ V represents a teamti �= t0. Each vertexi ∈ V has acapacity

ci = s0 − si (=s̃0 − si )

indicating how many score pointsti may still get. The arcsa= (i, k) ∈ A represent matchesti : tk . So an arc fromi to k indicates
that teamti has a home match against teamtk . An assignmentis then a mapA → S, assigning some outcome(�j , �j ) to every
arca ∈ A. Thus an assignment partitions the sets�+(i) and�−(i) of leaving, respectively, incoming arcs ati ∈ V into sets

A
j
i

= {a ∈ �+(i) | a is assigned to�j : �j }

andB
j
i

= {a ∈ �−(i) | a is assigned to�j : �j }.
The partial sports competition problem can then be equivalently stated as
Partial sports competition problem PSC(S).
Instance: A multigraphG = (V ,A) and node capacitiesc ∈ RV .
Question: Can we find an assignment such that for each nodei ∈ V :

n∑
j=1

�j |Aj
i
| +

n∑
j=1

�j |Bj
i
|�ci? (2.1)

An assignment satisfying the capacity constraints (2.1) is called asolutionof the instance (G, c).

3. Equivalence of GSC and PSC

For most setsS(e.g., for those listed inTable 1) the assumptioñs0 = s0 is easily seen to bewithout loss of generality. Indeed,
when analyzing whethert0 has still a chance of winning the competition, we may always assume w.l.o.g. thatt0 wins all its
remaining matches. For arbitrary sets of outcomes, determining the “optimal”s̃0 (i.e., reducing GSC(S) to PSC(S)) is somewhat
more complicated.

Example 3.1. Consider, say, a competition consisting of four teams withS = {(1,0), (2,7), (0,1)}. It is not immediately clear
how many matches oft0 have to end in 1: 0 or 0 : 1. In general, one might think that the optimal strategy fort0 would be to
gain a rather high final scorẽs0 by playing “as many as possible” matches 2: 7. However, this is not true, if the competition is
in a state such as defined below.

Teams Scores

t0 11
t1 13
t2 16
t3 23

Remaining
matches

t0 : t1
t1 : t0
t0 : t2
t0 : t3
t1 : t2
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Thent0 can only win the competition by playing 2: 7 and 7: 2 againstt1, 2 : 7 againstt2, and 1: 0 againstt3 resulting in a
final scores̃0 = 23.

Now consider an arbitrary setS = {(�j , �j ) | j = 1, . . . , n} of outcomes. If PSC(S) is NP -complete, then so is (the more
general) GSC(S).

So assume PSC(S) is polynomially solvable. We could then, in principle, solve GSC(S) as follows. Given an instance (T , s,M),
we consider all possible ways (t0-assignments) in whicht0 can finish its remaining matches. We then solve PSC(S) for the various
score vectors̄s and corresponding capacities

c̄i = s̄0 − s̄i .

We claim that it suffices to consider only polynomially manyt0-assignments.
First, note the following: if two differentt0-assignments result in capacity vectorsc̄ andc′ with c̄�c′ (i.e., c̄ is dominatedby

c′), then it suffices to consider thet0-assignment leading toc′. (If PSC(S) is solvable with capacities̄c, then it is also solvable
with capacitiesc′.)

This observation allows us to reduce the relevant possible outcomes: suppose(�i , �i ), (�j , �j ) ∈ S with �i ��j and�i −
�i ��j −�j . Then at0-assignment (and its corresponding capacity vector) that letst0 play�i : �i in a home match is dominated.
So we may restrict the possible outcomes for home matches oft0 to a set

Sh
0 = {(�i1, �i1

), . . . , (�ip , �ip
)}

with �i1 < · · ·< �ip and�i1 − �i1
> · · ·> �ip − �ip

.
Similarly, we may restrict w.l.o.g. the set of possible outcomes of an away match oft0 to a set

Sa
0 = {(�j1, �j1

), . . . , (�jq , �jq
)}

with �j1
< · · ·< �jq

and�j1
− �j1 > · · ·> �jq

− �jq .

Lemma 3.1. Suppose(�i , �i ), (�j , �j ) ∈ Sh
0 with �i < �j . Then it suffices to considert0-assignments that assign less than

�j−�i

�j−�i
home matches oft0 against pairwise different teams to the outcome�i : �i (otherwise, the assignment is dominated).

Proof. Consider at0-assignment with outcomes�i : �i for home matches oft0 against a setT ′ of teams with|T ′|� �j−�i

�j−�i
.

Let s̄ denote the resulting score vector. For eacht ∈ T ′, change the outcome from�i : �i to �j : �j for exactly one of thet0 : t
matches and leave all other outcomes unchanged. This results in a score vectors′ with

s′
i =

{
s̄i + |T ′|(�j − �i ) if ti = t0
s̄i + �j − �i if ti ∈ T ′
s̄i otherwise.

Thenc′ � c̄ for the corresponding capacity vector, i.e.,c̄ is dominated. �

Note that in Lemma 3.1�i < �j implies
�j−�i

�j−�i
>0, since�i − �i > �j − �j by construction ofSh

0 . So if

kh0 : = max

{
�j − �i

�j − �i
| (�i , �i ), (�j , �j ) ∈ Sh

0

}
,

the relevant (non-dominated)t0-assignments for home matches oft0 can be constructed as follows. For a fixed teamt �= t0 there
are, say,|Mt |� |M| home matchest0 : t for t0 and hence( |Mt | + p − 1

|Mt |
)

�
( |M| + p − 1

|M|
)

�p|M|p

possiblet0-assignments. An outcome�i : �i with �i < �ip occurs in at mostkh0 home matches oft0 against pairwise different

teams. So there are at most(p − 1)kh0 many teamst ∈ T for which t0 finishes a home match with�i : �i , �i < �ip , i.e., t0
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plays its home matches�ip : �ip
against at least|T | − (p − 1)kh0 many teams. So the total number of relevantt0-assignments

on home matches is bounded by

(p−1)kh
0∑

i=0

( |T |
i

)
p|M|p = O(|T |pkh

0p|M|p).

A similar argument can be applied to the away matches oft0. Thus, we obtain

Theorem 3.1. For any set S of outcomes, GSC(S) is polynomially equivalent toPSC(S).

4. Normalization of the set of outcomes

Our main theorem completely determines the computational complexity of PSC(S) for all possible sets of outcomesS. Before
we go into that result we first prove the following proposition that reduces the number of sets of outcomes with respect to
complexity questions. We let�+ and�− denote the outdegree and indegree of a node.

Proposition 4.1. AssumeS = {(�1, �1), (�2, �2), . . . , (�n, �n)}. Then there exists a set of outcomes

S′ = {(0, �′
1), (1, �

′
2), (�

′
3, �

′
3), . . . , (�

′
k−1, �

′
k−1), (�

′
k,0)}

with k�n, 1< �′
3 < �′

4 < · · ·< �′
k

and�′
1 > �′

2 > · · ·> �′
k−1�1 such that, given an instance(G, c) of PSC(S) we can derive

an equivalent instance(G′, c′) of PSC(S′), i.e., (G, c) has a solution if and only if(G′, c′) has a solution.

Proof. Suppose two outcomes(�i , �i ), (�j , �j ) ∈ S exist with �i ��j and�i ��j . We are searching for an assignment, in
which everyi ∈ V receives a sufficiently small number of additional points. So the outcome (�i , �i ) is always more preferable
than (�j , �j ). In other words, we may remove (�j , �j ) from S. After deleting all redundant outcomes, we can arrange the

remaining outcomes in such a way that we have obtained a setS̄ ofk�n outcomes

{(�̄1, �̄1), (�̄2, �̄2), . . . , (�̄k, �̄k)}
with �̄1 < �̄2 < · · ·< �̄k and�̄1 > �̄2 > · · ·> �̄k .

Set ĉi : =ci − �̄1�+(i) − �̄k�
−(i) for eachi ∈ V . Then it is clear that we have obtained an equivalent instance (G, ĉ) of

PSC(̂S), where

Ŝ = {(0, �̄1 − �̄k), (�̄2 − �̄1, �̄2 − �̄k), . . . , (�̄k − �̄1,0)}.
Assume that̄�2 − �̄1� �̄k−1 − �̄k . Otherwise reverse the arcs inG and the pairs (̄�i , �̄i ). For alli ∈ V divideci by �̄2 − �̄1. For
1�j �k divide �̄j − �̄1 and�̄j − �̄k by �̄2 − �̄1. This way we have obtained an equivalent instance (G′, c′) of PSC(S′), where

S′ = {(0, �′
1), (1, �

′
2), (�

′
3, �

′
3), . . . , (�

′
k−1, �

′
k−1), (�

′
k,0)}

with k�n, 1< �′
3 < �′

4 < · · ·< �′
k

and�′
1 > �′

2 > · · ·> �′
k−1�1. �

We call the setS′ in Proposition 4.1normalized. Note that a set of outcomesScan be normalized in polynomial time.

5. Three-dimensional matching graphs

In cases where PSC(S) turns out to beNP -complete we prove this by reduction from 3-dimensional matching (3DM) (cf.[4]).
3-Dimensional matching (3DM).
Instance: Three disjoint setsX, Y andW with the same number of elementsq and a subsetR ⊆ X × Y × W .
Question: Does there exist a3-dimensional matching, i.e., is there a subset of triplesR′ ⊆ R such thatR′ covers each element

of X ∪ Y ∪ W exactly once?
Let (X, Y,W,R) be an instance of 3DM. The problem will be trivial, if an elementz ∈ X ∪ Y ∪ W does not occur in some

triple r ∈ R. Therefore, we assume that allz ∈ X ∪ Y ∪ W occur in somer ∈ R.
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Fig. 1. A 3DM graph.

We construct anundirectedgraphG = (V ,E) as follows. We first make one copy of each elementz ∈ X ∪ Y ∪ W for each
occurrence ofz in R, i.e., we define

X̄ := {(x, r) | x ∈ X, r ∈ R, x ∈ r}
Ȳ := {(y, r) | y ∈ Y, r ∈ R, y ∈ r}
W̄ := {(w, r) | w ∈ W, r ∈ R,w ∈ r}.

The node setV of G is defined asV = X ∪ Y ∪ W ∪ X̄ ∪ Ȳ ∪ W̄ ∪ R. The edges ofG are defined by the incidence relations in a
straightforward way, i.e.,

E = {(x, (x, r)) | (x, r) ∈ X̄}
∪ {(y, (y, r)) | (y, r) ∈ Ȳ }
∪ {(w, (w, r)) | (w, r) ∈ W̄ }
∪ {(r, (x, r)) | (x, r) ∈ X̄}
∪ {(r, (y, r)) | (y, r) ∈ Ȳ }
∪ {(r, (w, r)) | (w, r) ∈ W̄ } (cf. Fig. 1).

We call the graphG a 3-dimensional matching graph. Our reduction from 3DM in Section 6 is based on this type of graphs
by directing them and defining node capacities in an appropriate way.

6. Complexity results

The following theorem determines the complexity of PSC(S) for all sets of outcomesS.

Theorem 6.1. PSC(S) is polynomially solvable if, after normalization,

S = {(i, n − i) | 0� i�n}
for somen ∈ N. In all other cases the problem isNP -complete.

Proof. By Proposition 4.1 we may without loss of generality assume thatS is normalized. If|S| = 1, then after normalization
S = {(0,0)} and the problem is trivial.
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Suppose|S|�2 andS={(0, �1), (1, �2), (�3, �3), . . ., (�n−1, �n−1), (�n,0)} with 1<�3<�4<· · ·<�n and �1>�2>· · ·>
�n−1�1. We prove the theorem by establishing a sequence of claims. In the end it will be clear that only if
S = {(i, n − i) | 0� i�n}, PSC(S) is polynomially solvable.

Claim 1. If �i > �i−1 + 1 for some3� i�n, thenPSC(S) is NP -complete.

As mentioned in the previous section we proveNP -completeness by reduction from 3DM. Suppose|X| = |Y | = |W | = q and
R ⊆ X × Y × W are given. We are to determine whetherR contains a matchingR′ ⊆ R. After constructing the corresponding
3DM graphG (cf. Fig. 1) we direct the edges and define node capacitiesc ∈ RV as follows.� refers to the degree function ofG.

arcs from W to W̄

arcs from R to W̄

arcs from R to X̄

arcs from R to Ȳ

arcs from X to X̄

arcs from Y to Ȳ .

c ≡ �n(� − 1) + �n−1 on W

c ≡ max{�i−1, �n−1 + �i} on W̄

c ≡ max{�i ,2 + �i−1} on R

c ≡ �1 + �2 on X̄ ∪ Ȳ

c ≡ 1 onX ∪ Y .

This way we have constructed an instance (Ḡ, c) of PSC(S). We claim that (̄G, c) has a solution if and only ifR contains a
3DM.

“⇐” SupposeR′ ⊆ R is a matching. Define a corresponding assignment forḠ as follows. For eachw ∈ W choose the unique
r ′ ∈ R′ with (w, r ′) ∈ W̄ . Let the matchw : (w, r ′) end in�n−1 : �n−1 and all other matches betweenw andW̄ in �n : 0. This
way the capacity constraints ofw are met. For eachr = (x, y,w) ∈ R′ let r : (w, r) end in�i : �i . Bothr : (x, r) andr : (y, r)
end in 0: �1. For eachr = (x, y,w) ∈ R\R′ let r : (w, r) end in�i−1 : �i−1. Bothr : (x, r) andr : (y, r) end in 1: �2. This
way we ensure that the capacity constraints onW̄ andR are respected. Finally, let all matches betweenX̄ andX end in 0: �1
except those that correspond to an element inR′. They end in 1: �2. This way the capacity constraints forX andX̄are met. We
determine the outcomes of matches betweenȲ andY in the same way. This assignment gives a solution of the instance (Ḡ, c).

“⇒” Conversely, suppose we are given an assignment forḠ respecting the capacity constraints. Eachx ∈ X has achieved
at most 1 additional point. Suppose w.l.o.g. thatx indeed has played one match that ended in 1: �2, while all other remaining
matches betweenx andX̄ ended in 0: �1. (If this is not the case, then we could modify our solution without violating the
capacity constraints). A similar argument holds for elementsy ∈ Y .

Nodes inX̄ have degree 2. In view of their capacity bound�1 + �2, we may assume w.l.o.g. that each(x, r) ∈ X̄ has played
one match that ended in 0: �1, and one match that ended in 1: �2. Otherwise we could again modify the solution, since
�1 > �2 > · · ·> �n−1 > �n = 0. Then we conclude that

• There are exactly|X| matches between̄X andR ending in 0: �1. Moreover, ifr : (x, r) has ended in 0: �1 andr ′ : (x′, r ′)
has ended in 0: �1, thenx �= x′.

The same holds for matches betweenȲ to R.
A nodew ∈ W has capacity�n(�(w) − 1)) + �n−1. Then w.l.o.g. we may assume that�(w) − 1 matches betweenw and

W̄ have ended in�n : 0, and that one match ofw has ended in�n−1 : �n−1. Otherwise we could modify the solution, since
�n > �n−1 > · · ·> �3 > �2 = 1.

Nodes inW̄ have degree 2 and capacity bound max{�i−1, �n−1 + �i}.
Suppose max{�i−1, �n−1 + �i} = �i−1. If w : (w, r) has ended in�n : 0, then we may assume w.l.o.g. thatr : (w, r) has

ended in�i−1 : �i−1. If w : (w, r) has ended in�n−1 : �n−1, then the maximum number of points(w, r) could achieve in its
away match againstr is �i . (Recall that�n−1�1 and�j < �j−1 for 2�j �n.) Therefore, we assume that in that caser : (w, r)

ends in�i : �i .
Suppose max{�i−1, �n−1 + �i} = �n−1 + �i . If w : (w, r) has ended in�n : 0, then we may assume thatr : (w, r) does not

end in�i : �i , since we can always change the outcome into�i−1 : �i−1. If w : (w, r) has ended in�n−1 : �n−1, then we can
assume thatr : (w, r) has ended in�i : �i .

In both cases we conclude that

• There are exactly|W | matches between̄W andRending in�i : �i . Moreover, ifr : (w, r) has ended in�i : �i andr ′ : (w′, r ′)
has ended in�i : �i , thenw �= w′.

Finally, the capacity constraints onR imply that a noder = (x, y,w) ∈ R can only play a match against(w, r) that ends in
�i : �i , if both r : (x, r) andr : (y, r) end in 0: �1.
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This can be seen as follows. Ifc(r) = �i , this is immediately clear. Supposec(r) = 2 + �i−1. Supposer : (w, r) ended in
�i : �i and that, say,r : (x, r) ended in 1: �2. Then�i + 1�2+ �i−1. Hence�i ��i−1 + 1, a contradiction to our assumption
�i > �i−1 + 1.

From this and the above observations, it is straightforward to check that

R′ = {r = (x, y,w) ∈ R | r : (w, r) ended in�i : �i}

actually is a 3DM.

Claim 2. If �i−1 > �i + �n−1 for some2� i�n − 1, thenPSC(S) is NP -complete.

The proof of Claim 2 is analogously to the proof of Claim 1. Reverse�i and�i (i = 1, . . . , n).
From now on suppose for all 2� i�n

�i ��i−1 + 1 and �i−1��i + �n−1. (6.1)

Claim 3. If �i < �i−1 + 1 and�i−2 > �i + �n−1 for some3� i�n, thenPSC(S) is NP -complete.

Again we proveNP -completeness by reduction from 3DM. Suppose|X| = |Y | = |W | = q andR ⊆ X × Y × W are given.
After constructing the corresponding 3DM graphG we direct the edges and define node capacitiesc ∈ RV as follows:

arcs from W to W̄

arcs from R to W̄

arcs from R to X̄

arcs from R to Ȳ

arcs from X to X̄

arcs from Y to Ȳ .

c ≡ 1 onW

c ≡ �1 + �2 on W̄

c ≡ max{2�i ,2�i−1 + 1} on R

c ≡ �i + �n−1 on X̄ ∪ Ȳ

c ≡ �n(� − 1) + �n−1 on X ∪ Y .

This way we have constructed an instance (Ḡ, c) of PSC(S). We claim that (̄G, c) has a solution if and only ifR contains a
3DM.

“⇐” SupposeR′ ⊆ R is a matching. Define a corresponding assignment forḠ in a similar way as in the proof of Claim 1.
“⇒” Suppose we are given an assignment forḠ respecting the capacity constraints. Eachw ∈ W can achieve at most 1

additional point. Suppose w.l.o.g. thatw indeed has played one match that ended in 1: �2, while all other remaining matches
betweenw andW̄ ended in 0: �1.

Nodes inW̄ have degree 2. In view of their capacity bound�1 +�2, we may assume w.l.o.g. that each(w, r) ∈ W̄ has played
one match that ended in 0: �1, and one match that ended in 1: �2. Then we conclude that

• There are exactly|W | matches between̄W andRending in 0: �1. Moreover, ifr : (w, r) has ended in 0: �1 andr ′ : (w′, r ′)
has ended in 0: �1, thenw �= w′.

A nodex ∈ X has capacity�n(�(x)− 1))+ �n−1. Then w.l.o.g. we may assume that�(x)− 1 matches betweenx andX̄ have
ended in�n : 0, and that one remaining match ofx has ended in�n−1 : �n−1. A similar argument holds for elementsy ∈ Y .

Nodes inX̄ have degree 2 and capacity bound�i + �n−1. If x : (x, r) has ended in�n : 0, then the maximum number of
points (x, r) could achieve in its away match againstr is �i−1. (Recall that�i−2 > �i + �n−1.) By (6.1) we may assume that
r : (x, r) ends in�i−1 : �i−1. If x : (x, r) has ended in�n−1 : �n−1, then we can assume thatr : (x, r) has ended in�i : �i .
Hence we conclude the following.

• There are exactly|X| matches between̄X andRending in�i : �i . Moreover, ifr : (x, r) has ended in�i : �i andr ′ : (x′, r ′)
has ended in�i : �i , thenx �= x′.

The same holds for matches betweenȲ to R.
Finally, the capacity constraints onR imply that a noder = (x, y,w) ∈ R can only play a match against(x, r) or against

(y, r) that ends in�i : �i , if r : (w, r) ends in 0: �1.
This can be seen as follows. Supposer : (w, r) ends in 1: �2 andr : (x, r) ends in�i : �i . The matchr : (y, r) ends in�i : �i

or �i−1 : �i−1. If c(r) = 2�i andr : (y, r) ends in�i−1 : �i−1, then�i + �i−1 + 1�2�i , a contradiction to our assumption
�i < �i−1 + 1. If c(r) = 2�i−1 + 1 andr : (y, r) ends in�i−1 : �i−1, then againc(r) is too small.
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From this and the above observations, it is straightforward to check that

R′ = {r = (x, y,w) ∈ R | r : (w, r) ended in 0: �1}
is a 3DM.

Claim 4. If �i−1 < �i + �n−1 and�i+1 > �i−1 + 1 for some2� i�n − 1, thenPSC(S) is NP -complete.

The proof of Claim 4 is analogously to the proof of Claim 3. Reverse�i and�i (i = 1, . . . , n).

Claim 5. If �i < �i−1 + 1 for some3� i�n, thenPSC(S) is NP -complete.

Suppose�k < �k−1 + 1 with k = min{i | �i < �i−1 + 1}. Since�2 = �1 + 1, k�3. If �k−2 > �k + �n−1, then the claim
follows from Claim 3. Suppose�k−2��k + �n−1. Since�k < �k−1, we obtain�k−2 < �k−1 + �n−1. Becausek is minimal,
�k−1 = �k−2 + 1. Hence�k > �k−1 = �k−2 + 1, and the claim follows from Claim 4.

Claim 6. If �j−1 < �j + �n−1 for some2�j �n − 1, thenPSC(S) is NP -complete.

Suppose�j−1 < �j + �n−1 for some 2�j �n − 1. By (6.1) and Claim 5 we can assume that�i = �i−1 + 1 for all 2� i�n.
Then�j+1 = �j + 1> �j−1 + 1, and the claim follows from Claim 4.

Up to now we have proven that PSC(S) is NP -complete unless

S = {(i, (n − i)�) | 0� i�n}
for some��1.

Claim 7. If �>1, thenPSC(S) is NP -complete.

Again, we proveNP -completeness by reduction from 3DM. Suppose|X| = |Y | = |W | = q andR ⊆ X × Y × W are given.
After constructing the corresponding 3DM graphG we direct the edges and define node capacitiesc ∈ RV as follows:

arcs from W̄ to W
arcs from W̄ to R
arcs from R to X̄

arcs from R to Ȳ

arcs from X to X̄

arcs from Y to Ȳ .

c ≡ n�(� − 1) + (n − 1)� on W

c ≡ n on W̄

c ≡ max{�,2} on R

c ≡ n� + (n − 1)� on X̄ ∪ Ȳ

c ≡ 1 onX ∪ Y .

This way we have constructed an instance (Ḡ, c) of PSC(S). The claim that (̄G, c) has a solution if and only ifR contains a
matching can be proven in the same way as we did for Claims 1 and 3.

From the above we conclude that PSC(S) is NP -complete, ifS �= {(i, n− i) | 0� i�n} after normalization. We have proven
our theorem by showing the validity of the final claim.

Claim 8. If � = 1, thenPSC(S) is polynomially solvable.

Consider an instance given byG = (V ,E) andc ∈ RV . Construct a directed bipartite graph with node setsV andE and arcs
linking eachi ∈ V to all edges inE incident withi in G. Then add an additional sources and sinkt as indicated inFig. 2.

The arcs froms to V all get lower capacity 0 and upper capacity�ci� (i ∈ V ). The arcs fromV to E get lower capacity 0 and
upper capacityn. The arcs fromE to t get lower and upper capacityn. The resulting network has a feasibles-t flow if and only
if our instance (G, c) has a solution. This can be seen as follows. Since all capacities are integral, a feasibles-t flow may also be
assumed to be integral. Each nodee ∈ E in our network has two incoming arcs which carry a total flow ofn units, distributed
asi : n − i for some 0� i�n corresponding to an outcomei : n − i.

As a result of this and Theorem 3.1 we find the following corollary that generalizes the complexity results in[7,2].

Corollary 6.1. GSC(S) is polynomially solvable if, after normalization,

S = {(i, n − i) | 0� i�n}
for somen ∈ N. In all other cases the problem isNP -complete.
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(i,j)

s t

j

i
V

E

Fig. 2. The case where PSC(S) can be translated into a flow problem.
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